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Abstract. The main finding of complex systems research is that there can be a 
disconnect between the local behavior of the interacting elements of a complex 
system and regularities that are observed in the global behavior of that system, 
making it virtually impossible to derive the global behavior from the local rules. It 
is arguable that intelligent systems must involve some amount of complexity, and 
so the global behavior of AI systems would therefore not be expected to have an 
analytic relation to their constituent mechanisms. This has serious implications for 
the methodology of AI. This paper suggests that AI researchers move toward a 
more  empirical  research  paradigm,  referred  to  as  “theoretical  psychology,”  in 
which  systematic  experimentation  is  used  to  discover  how  the  putative  local 
mechanisms of intelligence relate to their global performance. There are reasons to 
expect that this new approach may allow AI to escape from a trap that has dogged 
it for much of its history: on the few previous occasions that something similar has 
been tried, the results were both impressive and quick to arrive.
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Introduction

One the most basic assumptions made by Artificial Intelligence researchers is that the 
overall behavior of an AI system is related in a lawful, comprehensible way to the low-
level mechanisms that drive the system.

I am going to argue that this apparently innocent assumption is broken, because all 
intelligent systems, regardless of how they are designed, must be complex systems1, 
and the definition of a complex system is that the overall behavior of the system is not 
always related in a comprehensible way to the low level mechanisms that cause the 
behavior. I will further argue that the consequences of this assumption being broken are 
so serious  that  the current  approaches to AI will  never  lead to a  full,  human-level 
artificial intelligence. The good news is that there is a way to solve the problem, and 
this solution could unlock the floodgates of progress in AI. The bad news is that many 
AI researchers are so uncomfortable with this solution that they are determined to resist 
it at all costs. My goal in this paper is to discuss the problem, outline the solution, and 
try to raise the awkward issues surrounding the negative reaction that the solution tends 
to provoke.

This is the “Complex Systems Problem,” and in the second part of the paper I 
propose a new methodology designed to overcome it. The new methodology involves a 

1 Unless otherwise noted, the terms “complex” and “complexity” will always be used here to refer to aspects 
of complex systems, not to the general sense that means “complicated,” nor to the mathematical analysis of 
algorithmic complexity.



combination of three factors: (i) a grassroots integration of AI and the field of cognitive 
psychology,  (ii) a  “complete  framework  first”  approach  to  AI  system  design,  and 
(iii) the use of  programs of  systematic experimentation,  in  which large numbers of 
systems are built in order to discover (rather than assume) the relationships between 
global behavior and local mechanisms.

It is important to emphasize that the proposed solution is rather more than just a 
new approach to AI. It is based on a body of knowledge (about human cognition) and a 
philosophical  attitude  (about  the  unavoidable  need  for  empirical  science)  that  is 
categorically rejected by many of the researchers who now dominate the AI field. The 
awkward truth is that the proposed new methodology has little use for most of the work 
that has been done in the AI field in the last two decades, and even less use for the 
devotion to formal systems that seems indispensible to many in the AI community.

These considerations about the social psychology of research in AI are important 
because they underline the extraordinary seriousness of the Complex Systems Problem. 
If the only way to solve the problem is to declare the personal philosophy and expertise 
of many AI researchers to be irrelevant at best, and obstructive at worst, the problem is 
unlikely to even be acknowledged by the community, let alone addressed.

The ultimate conclusion of this paper is that the Complex Systems Problem is the 
single biggest reason why a human-level artificial intelligence has not been built in the 
last fifty years, but that if someone has the vision and resolve to fly in the face of 
orthodoxy and implement the solution proposed here, the results could be dramatic. 
Quite  apart  from the fact  that  this  approach has  never  been tried before,  there  are 
positive reasons to believe that it would succeed where conventional AI has not.

1. Complex Systems

This section and the next examine the nature of complex systems and their impact on 
AI research. 

A complex system is one in which the local interactions between the components 
of the system lead to regularities in the overall,  global behavior of the system that 
appear to be impossible to derive in a rigorous, analytic way from knowledge of the 
local interactions.

This definition is  part  empirical  fact,  part  mathematical  intuition.  As empirical 
fact, it is a summary of observations made independently by a number of researchers 
who tried to understand the behavior of systems in a wide variety of fields [1].

The mathematical intuition aspect is  perhaps more powerful, because it  derives 
from something that has been said by nonlinear mathematicians for a long time: taken 
as a whole, the space of all possible mathematical systems contains a vast, unexplored 
region in which the systems are easy enough to define, but seem to be beyond the reach 
of analytic solution. It would probably be no exaggeration to say that the part of this 
space  that  contains  the  sum total  of  all  systems  that  have  so  far  been  rigorously 
analyzed is considered by many to be an unthinkably small corner of the whole space. 
The crucial part of the intuition concerns how far the tractable corner of this space 
might expand in the future: if human mathematicians could work for an arbitrary length 
of time, would they be able to find analytic solutions for most of the systems in the 
unexplored region? There is no particular reason to assume that we could do this, and it 
would not be surprising if there exist no analytic solutions whatsoever that describe the 
behavior of almost all of the systems in that space.



The implication of this intuition is that if a system has components that interact in 
such  a  nonlinear,  tangled  way  that  we  have  doubts  about  whether  any  analytic 
understanding  of  its  behavior  will  ever  be  possible,  we  should  at  least  adopt  the 
precautionary principle that there might not be any analytic explanation of the system. 
We should be especially careful when we observe regularities in the global behavior of 
such systems: those regularities should not be taken as a clue that a formal, analytic 
explanation  is  lurking  beneath  the  surface.  The  term “complex  system” is  used  to 
describe  precisely  those  cases  where  the  global  behavior  of  the  system  shows 
interesting  regularities,  and is  not  completely  random, but  where  the  nature  of  the 
interactions  between  the  components  is  such  that  we  would  normally  expect  the 
consequences of those interactions to be beyond the reach of analytic solutions.

This defining feature of complexity is sometimes referred to as “emergence” [2], 
but since that term has wider significance (and is even taken by some to have vitalist 
connotations that border on the metaphysical), the term “Global-Local Disconnect” (or 
GLD)  will  be  used  here.  The  GLD  merely  signifies  that  it  might  be  difficult  or 
impossible to derive analytic explanations of global regularities that we observe in the 
system, given only a knowledge of the local rules that drive the system.

1.1.The Recipe for Complexity

Speaking in purely empirical terms, it is possible to give a list of design ingredients that 
tend to make a system complex:

• The system contains large numbers of similar computational elements.
• Simple rules govern the interactions between elements.
• There is a significant degree of nonlinearity in the element interactions.
• There is adaptation (sensitivity to history) on the part of the elements.
• There is sensitivity to an external environment.
When the above features are present and the system parameters are chosen so that 

system activity does not  go into a  locked-up state  where nothing changes,  and the 
activity does not go into an infinite loop, then there is a high probability that the system 
will show signs of complexity.

It should be understood, however, that this recipe only gives a flavor of what it 
takes to be complex: it is possible to find systems that lack some of these features but 
which would still be considered complex.

1.2.The Absence of a Clear Diagnostic

One fact about complex systems is especially important in the context of the present 
paper, where a great deal hinges on whether or not AI systems can be proven to have a 
significant amount of complexity in them:

• It is (virtually) impossible to find a compact diagnostic test that can be used to 
separate complex from non-complex systems, because the property of “being 
a complex system” is itself one of those global regularities that, if the system 
is  complex,  cannot  be  derived  analytically  from the  local  features  of  the 
system.

What this means is that any debate about whether or not intelligent systems are 
complex  must  not  involve  a  demand  for  a  definitive  proof  or  test  of  complexity, 
because there is no such thing.



The “virtually” qualifier, above, refers to the fact that complex systems are not 
excluded  from  having  global  properties  that  are  derivable  from  local  features  or 
mechanisms: it is just that such exceptions to the GLD are unusual, especially where, 
as in this case, the property is supposed to hold across a large, nonhomogeneous class 
of systems.

1.3.Controversy

The scientific status of complex systems research has been disputed. Skeptics like John 
Horgan [3] have argued that the term “complex system” means whatever people want it 
to mean, and that in spite of all the effort put into the field there is little in the way of a 
theory that might unify the disparate phenomena under study.

This  criticism  may  have  some  merit,  but  it  is  important  to  understand  that 
Horgan’s points have no relevance to the arguments presented here. It is not important 
that there be a general theory of complexity, because all that matters here is one rather 
simple observation about the behavior of complex systems: the global-local disconnect. 
The GLD is a deceptively innocent idea—it seems to lack the kind of weight needed to 
disrupt  an  entire  research  program—but  if  it  is  real,  and  if  complexity  plays  a 
significant role in the behavior of intelligent systems, then much of mainstream AI 
research may nevertheless have been severely compromised by it.

1.4.Computational Irreducibility

Could it be that complex systems only appear to have a global-local disconnect because 
current mathematical tools are not up to the task of analyzing them? Perhaps in the 
fullness  of  time  these  systems  will  be  understood  in  such  a  way  that  the  global 
regularities are derivable from the local mechanisms? In that case, the GLD might be 
nothing more than temporary pessimism.

This flies  in  the face of  the intent  of  the complex systems idea,  which is  that 
something more than mere pessimism is involved; there really is something new and 
fundamentally different about many of these systems, and there will not be any future 
mathematical formalism that eliminates the GLD.

Stephen Wolfram has used the term “computational irreducibility” [4] to capture 
one version of this idea. Physical systems obey laws that govern their behavior, and 
Wolfram's suggestion is that those laws can be viewed as if they were computations 
being carried out by a physical system in order to calculate the next set of values for its 
physical state. What we have known ever since the time of Isaac Newton is that we can 
reduce these laws to equations that allow us to short-circuit the physical computations 
and predict what a physical system will do before it does it. If we want to know where 
a planet will be next week, we can use equations that do not take a whole week to 
complete, whereas the computations that the planet is effectively executing when it 
follows its local laws of nature do take a week.

What Wolfram points out is that although we have had great success in finding 
mathematical systems that allow us to reduce the behavior of physical systems in this 
way, there is no guarantee that all physical systems should be amenable to this trick, 
and that, on the contrary, there appears to be a very large class of systems that will 
never be so reduced. Running a simulation of such a system would then be the only 
viable way to find out how it behaves.

Can this idea of computational irreducibility be proved? Almost certainly not: at 
this stage it is an empirical observation about the nature of the world, and there may 



never be any way to formally prove that a given system is permanently irreducible. It 
has the status of a meta-law of the universe: a law that says that not all the regularities 
in the universe can be described with equations that can be solved.

The main implication of computational irreducibility is that our faith in the power 
of mathematical descriptions of the physical world is misplaced: a system can show 
regularities in its overall behavior without there being any analytic explanation that 
connects those regularities to local mechanisms.

2. The Relationship Between Complex Systems and AI

One of the main arguments advanced in this paper is that complexity can be present in 
AI  systems  in  a  subtle  way.  This  is  in  contrast  to  the  widespread  notion  that  the 
opposite is true: that those advocating the idea that intelligence involves complexity are 
trying  to  assert  that  intelligent  behavior  should  be  a  floridly  emergent  property  of 
systems in which there is no relationship whatsoever between the system components 
and the overall behavior.

While there may be some who advocate such an extreme-emergence agenda, that 
is certainly not what is proposed here. It is simply not true, in general, that complexity 
needs to make itself felt in a dramatic way. Specifically, what is claimed here is that 
complexity can be quiet and unobtrusive, while at the same time having a significant 
impact on the overall behavior of an intelligent system.

2.1.Conway’s Game of Life

One way to see this quiet-but-significant effect is to look at a concrete example. This 
section is therefore centered on a set of variations on one of the most elementary of 
complex systems: John Horton Conway’s cellular automaton called “Life” [5].

Life is a cellular automaton based on a 2-dimensional square grid of cells, with 
changes happening simultaneously to all of the cells at every tick of a global clock. 
Each cell can be either ON or OFF, and the rules for what the cell should do after the 
next tick depend only on its own state and the state of its eight nearest neighbors at the 
current time:

• If the cell is currently ON, stay ON if there are 2 or 3 neighbors ON, else go to 
the OFF state.

• If the cell is currently OFF, switch to the ON state if 3 neighbors are ON, else 
stay in the OFF state.

As is now well known, Life displays many patterns of activity that are stable in the 
sense that there is a period (a number of ticks) after which a pattern repeats exactly. 
There are also patterns that are not periodic, but which are salient for some reason. An 
entire  zoo  of  “creatures”  has  been discovered  in  this  miniature  universe,  including 
Gliders that move at a regular speed across the plane, Glider Guns that make Gliders, 
and Fuses that burn down like real-world fuses. These creatures are clearly an example 
of observed global regularities in the behavior of the system.

The most  interesting question about  Life  concerns  the  explanatory  relationship 
between the creatures and the local rules: is it possible to write down a formula that, for 
example, would predict all of the creatures that exist in Life, given only the definition 
of  the local  rules? The GLD says that  this is  not  feasible:  there is  likely to  be no 
analytic relationship between the local rules and the observed patterns.



2.2.Dynamic Complexity and Static Complexity

Conway’s Life can be used to illustrate an important distinction between two different 
interpretations of how complexity manifests itself: what might be called “dynamic” 
regularities and “static” regularities. This distinction has to do with the fact that there is 
more than one level at which global regularities can appear in a complex system. The 
obvious level is where patterns of cell activation are noticed by us because they are 
stable. These are dynamic regularities because they occur in the moment-to-moment 
functioning of the system.

However,  a  second  type  of  regularity  can  be  seen  in  the  search  activity  that 
Conway and his colleagues undertook when they were trying to find a good set of rules 
to define the game. Conway began with a desired global feature of his target system: 
broadly speaking, what he wanted was a high value for a parameter that we can refer to 
as the “generative capacity” (or “G”) of the system—he wanted to have comparable 
numbers of ON cells being created and destroyed. According to one account, he found 
a set of rules with the desired global property,

“ ... only after the rejection of many patterns, triangular and hexagonal lattices as well as 
square ones, and of many other laws of birth and death, including the introduction of two and 
even three sexes. Acres of squared paper were covered, and he and his admiring entourage of 
graduate students shuffled poker chips, foreign coins, cowrie shells, Go stones or whatever 
came to hand, until there was a viable balance between life and death.” [6]

Why did he not do some mathematical analysis and construct a function to predict 
the generative capacity from a given system design? Because such a function would 
have been extremely hard to derive, especially given the wide selection of grid types, 
gender valencies and rule structures under consideration. Complex systems theorists 
would now say that such an analytic function is practically impossible.

Although this “generative capacity” parameter is certainly a global regularity, it is 
a far less obvious type of regularity than the moving patterns of cell activation. To the 
extent that the generative capacity is not derivable from the local rules and architecture 
of the system, this is a bona fide example of complexity—but it is both static and more 
global  than  the  dynamic  complexity  of  the  patterns.  Static  regularities  are  about 
characteristics  of  the  system that  are  to  some  extent  time-independent:  whereas  a 
dynamic pattern comes and goes, a parameter like the generative capacity has to be 
measured over a long period of time, and refers to the system and all of the patterns 
that occur in it. So there are two senses of “global” at work here: global structures that 
are larger than single cells, but which can be recognized in a modest amount of time, 
and global  characteristics that  encompass  the behavior  of  the system and all  of  its 
patterns.

2.3.Searching for Static Regularities

This distinction is important because in some complex systems the dynamic regularities
—the equivalent of the creatures in Life—may be the ones that grab all the limelight 
because of their salience, whereas there may be other, more subtle and almost invisible 
static regularities that turn out to be the most important features of the entire system.

We can see this point more graphically if we consider what might have happened 
if Conway had searched for systems characterized by something more ambitious than a 
high value for the generative capacity. At a very simple level, for example, he could 
have looked for systems that generate large numbers of interesting creatures,  rather 
than just  a  good balance between cell  creation and destruction. Note that  this new 



concept of “creature density” is a more subjective characteristic, but this subjectivity 
would not stop us from searching for systems with a high value for the creature density.

 Would creature density be classified as a global regularity that is hard to predict 
from the local rules that govern the system? This is certainly possible, and empirical 
experience with large numbers of other complex systems indicates that it is likely. Is 
creature density less valid as a global regularity because it is more subjective? Not at 
all.

Now imagine a more ambitious goal: a system with a definite boundary, and with 
input patterns arriving at that boundary from outside, together with the requirement that 
the system should respond to each external pattern by producing an internal response 
that is unique in some way. For every pattern appearing at the boundary, one response 
pattern would have to be generated inside the system.

A further requirement might be that these response patterns be learned over time, 
and stand in a one-to-one correspondence with the input patterns, so that the internal 
response could be used to identify a previously seen input pattern.

At an even more ambitious level, consider systems that do all of the above, but 
which also seem to collect together entire classes of subjectively “similar” boundary 
patterns, in such a way that all patterns in the class trigger the same internal pattern. 
(The  attentive  reader  will  recognize  that  this  has  already  been  done:  unsupervised 
neural nets can discover limited kinds of pattern in this way [7]).

Finally,  imagine  a  system  in  which  multiple  external  patterns  are  allowed  to 
impinge simultaneously on different parts of the boundary, with patterns standing in 
various  “relationships”  to  one  another,  and  with  the  requirement  that  the  system 
produce internal patterns that encode, not just classes of similar patterns,  but meta-
patterns that are “arrangements” of basic-level  patterns (where an arrangement is  a 
group of pattern-instances standing in a certain relationship to one another)—as well as 
patterns of these higher level patterns, and patterns of those second-level patterns, and 
so on, without limit.

We have clearly progressed well beyond Conway’s modest goal of finding systems 
that maximize a global parameter called “generative capacity,” so maybe it is time to 
invent a new term to parameterize the degree to which a system exhibits the particular, 
rather exotic type of global regularity described in the last couple of paragraphs. Call 
this parameter the “Lintelligence” of the system.

Just as it was for the case of the creature density parameter, we would expect this 
new parameter to be a global, static regularity, and we would also have no reason to 
treat it as a less meaningful concept just because it was subjectively defined.

Now imagine that we are looking at an example of a High-Lintelligence cellular 
automaton. What attracts our attention (perhaps) are the dynamic patterns of activated 
cells, and if we were interested in complexity we might be impressed by the way that 
these global structures could not be derived from the local mechanisms. However, if we 
are interested instead in the overall Lintelligence of the system, the local patterns are a 
distraction, because the Lintelligence is just as underivable from patterns as the patterns 
are from the substrate.

The name “Lintelligence” was designed to be suggestive, of course. Could it be 
that the thing we colloquially call “intelligence” is a global, static regularity like the 
one just described? Not as simple as Lintelligence, but perhaps an even more elaborate 
and exotic extension of it. This seems entirely reasonable—and if true, it would mean 
that our search for systems that exhibit intelligence is a search for systems that (a) have 
a characteristic that we may never be able to define precisely, and (b) exhibit a global-
local-disconnect between intelligence and the local mechanisms that cause it.



2.4.Defining Intelligence

It  might  be  worth  noting  one  implication  of  this  view  of  what  intelligence  is.  If 
intelligence is a global, static regularity, we would not expect there to be any compact 
definition of it. This is consistent with the fact that people find it extremely hard to pin 
down what intelligence is. Common usage seems to indicate that intelligence is just the 
cooperative activity of a cluster of mechanisms, that there is no single choice of this set 
of mechanisms (so there could be many varieties of intelligence), and that there are 
graded degrees of  intelligence,  possibly forming a continuum all  the way from the 
simplest thermostat to the human genius level and beyond.

The idea that intelligence could be reduced to a compact, non-circular definition in 
terms of  “agents” and “goals,”  or  that  such a definition could be given a rigorous 
mathematical formalization, would then amount to nothing more than mathematization 
for its own sake: a reductio ad absurdum of the commonsense definition.

2.5.Multiple Levels

In the sequence of hypothetical systems just considered, there was an assumption that 
the dynamic patterns would always be obviously complex: that the whole system, from 
top to bottom, would look like a seething cauldron of emergence, in which nothing 
could be explained by anything going on at a lower level.

This is not the case: large systems can have structure at many levels of description, 
and some of those levels can seem more complex than others. In the case of the Life 
automaton, for example, it is possible to step up from the cell level and note that some 
of  the discovered creatures  are actually made out  of  conjunctions of other,  smaller 
creatures. So there is a sense in which, at the creature level, objects can be used as 
building  blocks  for  larger  objects.  What  is  interesting  about  this  higher  level  of 
description is that it is more orderly—more mechanism-like and less complex-like—
than the lower level, because the components can be used in a fairly predictable way to 
assemble larger structures.

In general, a complex system does not have to show its complexity at every level 
of description. There might be a level at which it gives a fair approximation of being a 
mechanism-like system. That “fair approximation” label is important, of course: any 
attempt to pretend that Conway's Life is not complex, and that it could be substituted 
with a facsimile system in which the lowest level was eliminated, leaving the level 2 
objects as the base level, would almost certainly fail. In the case of Life we might try to 
build a facsimile system in which the basic units were creatures that were explicitly 
coded to interact in the ways that known Life creatures do, but although this system 
could very well be rigged so as to work like the original for a while, eventually its 
behavior would diverge from the real thing.

This question of multiple levels of description is relevant to AI because we try to 
build  intelligent  systems using  ideas  gleaned from insights  about  our  own thought 
processes. We sometimes talk of the basic units of knowledge—concepts or symbols—
as if they have little or no internal structure, and as if they exist at the base level of 
description of our system. This could be wrong: we could be looking at the equivalent 
of  the  second level  in  the  Life  automaton,  therefore  seeing  nothing  more  than  an 
approximation of how the real system works. (This argument is not new, of course: it 
was one of the main motivations cited by the early connectionists [8]).



2.6.Conclusion: Hidden Complexity

Combining the above notion of global, static regularity with the idea that there can be 
levels of description that are not obviously complex, it seems entirely plausible that the 
overall intelligence of an AI system could be a global, static regularity that is elusively 
dependent on complexity in the system, while at the same time there is a level of the 
system at which the “symbols” interact in ways that appear more mechanism-like than 
complex-like. If such were the case, and if we took pains to avoid situations in which 
the complex nature of the symbols would most likely manifest itself, we might stay 
convinced for a long time that intelligent systems are not significantly complex.

This matter has serious implications for the methodology of AI. The property of 
“being intelligent” might turn out to be either a mechanism-like property, or it might be 
a global, static complexity. If it is mechanism-like (in the way that “being fast” is a 
mechanism-like property of being a car) then all is well with the standard methodology 
of AI: we can try to find the low level components that need to be combined to yield 
intelligence. But if intelligence is a global, static complexity, then we may be in the 
same position as Conway when he was trying to find the local rules that would generate 
the global, static complexity that he sought. In the very worst case we might be forced 
to do exactly what he was obliged to do: large numbers of simulations to discover 
empirically what components need to be put together to make a system intelligent.

If our insights into the thinking process are showing us components that are not at 
the  base  level  of  our  system—if  the  symbols  or  concepts  that  we  appear  to  be 
manipulating are just an intermediate level of description of the system—then we may 
think we have identified the laws of thought, and that those laws of thought do not 
involve a significant amount of complexity, but we may be wrong.

At the very least, there is an important issue to be confronted here.

3. Making a Paradigm Choice

This argument is difficult to defend in detail, not because it is intrinsically weak, but 
because at the heart of the complexity idea is the fact that if the GLD is real, it will be 
almost  impossible  to  say  for  sure  whether  intelligent  systems  really  do  involve 
significant complexity.

In order  to definitively show that  intelligence involves  a  significant  amount of 
complexity,  we  may  have  no  choice  but  to  build  many complete  AI  systems  and 
gradually amass a database of example systems that all seem to have plausible local 
mechanisms. With this database in hand, we would then have to stand back and ask 
how successful  these  systems  are,  and  whether  we  are  seeing  a  good relationship 
between  the  changes  we  make  to  the  local  mechanisms  (in  order  to  fix  whatever 
shortcomings we encounter) and the intelligence of the overall system. If, as part of this 
process, we make gradual progress and finally reach the goal of a full, general purpose 
AI system that functions in a completely autonomous way, then the story ends happily.

But the complex systems argument presented here says that this will not happen. 
When we look at the database of example systems, accumulated over the course of 
perhaps hundreds of years of work (at the present rate of system-building progress), we 
may find that, for some inexplicable reason, these systems never actually make it to 
full, autonomous intelligence. It might take a long time to get a database large enough 
to merit a statistically significant analysis, but eventually we might reach the empirical 



conclusion that the overall intelligence of the systems does not bear a good relationship 
to the quality of the local mechanisms in each case.

If we ignore the Complex Systems Problem, this type of empirical effort may be 
the only way to come to a firm conclusion on the matter.

As an alternative to such a multi-century empirical program, the best we can do to 
decide whether complexity is important is to look for evidence that the ingredients of 
complexity are present. In other words we should stop asking for definitive, analytic 
proof that complexity is a problem (which the complex systems community claim is an 
impossible goal, if they are right about what complexity is), and instead look at the 
other way to define complexity: look at the ingredients and see if they are there.

This is fairly straightforward. All we need to do is observe that a symbol system in 
which (a) the symbols engage in massive numbers of interactions, with (b) extreme 
nonlinearity everywhere, and (c) with symbols being allowed to develop over time, 
with (d) copious interaction with an environment, is a system that possesses all the 
ingredients of complexity listed earlier. On this count, there are very strong grounds for 
suspicion.

We could also note a couple of pieces of circumstantial evidence. First, on those 
past occasions when AI researchers embraced the idea of complexity, as in the case of 
connectionism, they immediately made striking achievements in system performance: 
simple algorithms like backpropagation had some astonishing early successes [9][10]. 
Second, we can observe that the one place complexity would most likely show itself is 
in situations where powerful learning mechanisms are at work, creating new symbols 
and modifying old ones on the basis of real world input—and yet this is the one area 
where conventional AI systems have been most reluctant to tread. 

3.1.Paradigm Arguments

The problem with citing suggestive or circumstantial evidence in favor of the idea that 
complexity is both present and playing a significant role in intelligence, is that this is 
easily dismissed by those who choose to be skeptical.

For this reason, there is little point making further attempts to argue the case: this 
is simply a paradigm issue, in Kuhn's classic sense of that term [15]. Deciding whether 
or not the problem is serious enough to merit a change of methodology is, ultimately, a 
personal decision that each AI researcher needs to make separately. It would be a waste 
of  time  to  argue  about  definitive  proof  of  the  role  of  complexity,  because  the 
quicksilver nature of complex systems could always be used to cast  doubt on such 
efforts. 

In that spirit, the remainder of this paper moves on from the goal of arguing the 
case  for  complexity,  and  instead  tries  to  sketch  the  first  outline  of  an  alternative 
approach to studying and building cognitive systems.

4. The Theoretical Psychology Approach

The new methodology that  I  propose  is  not  about  random exploration of  different 
designs for a general, human-level AI, it is about collecting data on the global behavior 
of large numbers of systems, while at the same time remaining as agnostic as possible 
about the local mechanisms that might give rise to the global characteristics we desire. 
Rather than lock our sights on one particular approach—logical  inference,  bayesian 
nets, genetic algorithms, neural nets, or some hybrid combination of these name-brand 



approaches—we should organize our work so that we can look at the behavior of large 
numbers of different approaches in a structured manner.

The second main ingredient of the approach is the use of what we already know 
about human cognition. For reasons that will be explained shortly, I believe that it is 
not possible to ignore human cognition when we do AI. This combination of a close 
relationship with the data of cognitive science, an empirical attitude to the evaluation of 
intelligent  systems,  and  the  lack  of  any  commitment  to  directly  explain  human 
cognition, is what led to the choice of name for this approach: this is, in effect, a form 
of “theoretical psychology.”

4.1.Generalized Connectionism

The  roots  of  the  theoretical  psychology approach  go  back  to  early  connectionism. 
When connectionist ideas first came to prominence, the core principle was about more 
than just using neuron-like processing units, it was about exploring the properties of 
parallel, distributed systems, to find out by empirical experiment what they could do. It 
was also about the “microstructure” of cognition—the idea that symbols need not be 
just tokens manipulated by an external processor, but could be processors themselves, 
or even distributed aspects of clusters of processors. This emphasis on open-minded 
exploration and the rejection of dogmas about what symbols ought to be like, is closely 
aligned with the approach described here.

Interestingly, as the connectionist movement matured, it started to restrict itself to 
the  study  of  networks  of  neurally  inspired  units  with  mathematically  tractable 
properties.  This  shift  in  emphasis  was  probably  caused  by  models  such  as  the 
Boltzmann machine [11] and backpropagation learning [10], in which the network was 
designed in such a way that mathematical analysis was capable of describing the global 
behavior.

But  if  the  Complex  Systems  Problem  is  valid,  this  reliance  on  mathematical 
tractability would be a mistake, because it restricts the scope of the field to a very small 
part of the space of possible systems. There is simply no reason why the systems that 
show  intelligent  behavior  must  necessarily  have  global  behaviors  that  are 
mathematically tractable (and therefore computationally reducible).

Rather  than  confine  ourselves  to  systems  that  happen  to  have  provable  global 
properties, we should take a broad, empirical look at the properties of large numbers of 
systems, without regard to their tractability.

4.2.The Role of Intuition

If the only technique available to us were a completely random search of the space of 
possible cognitive systems, the task would be hopeless. The space to be searched is so 
large that if we had no other information about the target we might as well just try to 
randomly evolve an intelligent system, and expect to wait a very long time for results.

It is not the case, however, that we have no information about how an intelligence 
might function: we have some introspective knowledge of the workings of our own 
minds. 

Introspection is what AI researchers have always used as the original source of 
their algorithms. Whether committed to human-inspired AI or to the normative, rational 
approach that eschews the need to build systems in a human-like manner, the ideas that 
are being formalized and implemented today have their roots in the introspections of 
past thinkers. Even the concept of logical, rational thought was an idea noticed by the 



ancient Greek philosophers who looked inside themselves and wondered how it was 
that their thoughts could lead to valid conclusions about the world.

Introspection has had a bad reputation ever since the behaviorists tried to purge it 
from the psychological sciences, but in truth the aura of contagion that surrounds it is 
just an accident of the sociology of science. There is nothing wrong with it, if it is used 
as a source of inspiration for mechanisms that are then systematically explored and 
evaluated. For this reason, one of the defining features of the theoretical psychology 
approach is a search for ways to make the back-and-forth between introspective ideas 
and experimental tests of those ideas as fluid as possible.

The fact that we are cognitive systems ourselves is a good enough reason to hope 
that the starting points of our systematic investigations will be better than random.

There is another, less tangible, way that intuition can play a role. If we simulate 
large numbers of systems that differ by marginal changes in system parameters, we 
have some hope of observing regularities in the mapping between local mechanisms 
and global system behavior. Complex systems theory does not say that there will be no 
relationship whatsoever between the low level and the high level (it does not say that a 
small change in the low level mechanisms will always lead to an irregular, apparently 
random change in  the high level  behavior),  it  only says  that  there is  no analytical 
relationship. It may well be that when we start to engage in systematic variations of 
candidate systems, we discover by inspection and observation that certain changes in 
low level rules cause lawful changes in the overall system behavior. If this happens, we 
may  be  able  to  converge  on  a  workable  design  for  an  intelligent  system  in  a 
surprisingly short amount of time.

The only way to find this out is to do some real science.

4.3.Neural Inspiration

If a grassroots form of connectionism is the way to go, would it also be a good idea to 
take the concept of neural inspiration more literally and only study systems that are as 
close as possible to the ones found in the brain?

It might be a mistake to impose this kind of restriction, because of the access to 
introspection mentioned above. At the conceptual level (as opposed to the neural level) 
we have some direct, introspective information about what is going on and why, but we 
have no such internal access to the workings of the mind at the individual neuron level. 
We simply cannot introspect any aspects of individual neurons, synaptic vesicles or 
dendrites,  not  least  because we have little  ability  to  report  subjective events at  the 
millisecond timescale.

And although we do have some external access to the functioning of the brain, 
through brain mapping techniques, signal interventions and post-mortem examination, 
our ability to get fine detail, and to link that detail to the cognitive level, is a subject of 
fierce debate within the cognitive science community [12]; [13].

4.4.Frameworks and Quasi-Complete Systems

What does it mean to engage in a program of “systematic exploration” of the space of 
cognitive systems? To be systematic, such a program needs to be unified by a common 
conceptual framework that is explicit enough that it allows the relationships between 
systems to be clearly seen.

The  idea  of  a  “framework”  is  that  it  defines  a  set  of  choices  for  the  broad 
architectural features of the class of cognitive systems that it expresses. For every one 



of  the  various  mechanisms  that  we  might  anticipate  being  involved  in  a  complete 
cognitive  system,  the  framework  should  have  something  to  say  about  how  that 
mechanism  is  instantiated,  and  how  it  relates  to  the  rest  of  the  system.  These 
specifications should be explicit enough that a complete system could be constructed in 
accordance with them.

It would also be vital to keep humans out of the loop as much as possible: systems 
need to be autonomous. If autonomy is not possible, the human involvement should be 
made explicit (and credibility discounted accordingly).

Any  given  research  project  within  this  framework  would  involve  a  particular 
instantiation of a system consistent with the framework, together with a particular focus 
on one or more components of that system. The idea would be to make systematic 
variations of some aspect of the design and look at the effect those changes had on the 
global system behavior.

Thus,  someone determined to show that  (for example)  logical  reasoning was a 
valid  way to build intelligent  systems would instantiate  a  set  of  traditional-looking 
symbols,  inference  mechanisms  and  all  of  the  symbol-learning  mechanisms  and 
sensorimotor  apparatus  needed  to  connect  the  system  with  its  environment.  The 
mechanisms outside of the main focus of the research (all but the inference machinery, 
in  this  case)  might  be  implemented  in  a  simple,  provisional  way,  but  they  would 
nevertheless be complete enough that the system could truly function by itself over a 
long period of time. If nothing at all could be done to build those other mechanisms in 
such a way that the system functioned at all, this would reflect badly on the logical 
reasoning mechanisms that are the focus of interest, but it would not invalidate them 
outright—that invalidation would only happen if, over the course of time, all attempts 
to improve the surrounding matrix of mechanisms ended in failure. (It is the feeling of 
this author that this eventual failure would probably happen, but the final arbiter of 
such a question would be empirical experiment).

More likely,  frameworks would be used to explore a  variety of  non-traditional 
approaches  to  cognition,  most  of  them  in  the  generalized  connectionist  tradition. 
Whatever the philosophy that informs any given framework, however, the basic rules 
of the game would be to make both the framework and the systems instantiated within 
that framework complete enough to allow systematic variation of system parameters, 
and systematic comparison of the observed behavior of those systems.

This progression from general, loosely specified frameworks down to particular 
systems is a vital part of the process, and the framework part of the paradigm should 
not be dismissed as superfluous or scorned as unscientific. Anyone should be able to 
write down such a framework, for consideration by the community, so long as it is 
capable  of  being turned into a  specific  generator  that  yields  instances  of  cognitive 
systems.

5. Conclusion

There is only space here to give a brief outline of the proposed theoretical psychology 
approach to AI, but even from this short account, it is clearly ambitious. One of its 
objectives is to persuade researchers to build and examine dozens of different types of 
system in a day, rather one type of system per career. Is this just a blue sky fantasy?

The way to make it possible is by means of a software development environment 
specifically designed to facilitate the building and testing of large numbers of similar, 



parameterized cognitive systems. The author is currently working on such a tool, the 
details of which will be covered in a later paper.

More  generally,  any  framework  that  purports  to  be  the  basis  for  a  particular 
approach  to  AI—whether  that  framework  is  within  the  theoretical  psychology 
paradigm  or  not—should  be  defined  and  represented  by  a  software  development 
environment that allows systems in that class to be constructed with relative ease.

What is needed, in fact, is not so much a software development environment as an 
SDE generator that enables anyone to build a customized tool for building their chosen 
class of cognitive systems. Such a generator would support a variety of frameworks, 
not just one.

5.1.Scruffs versus Neats

One way to summarize the philosophy behind this paper is to say that AI research has 
gone though two phases, and is about to enter a third. In their influential textbook of 
AI, first published in 1995, Stuart Russell and Peter Norvig point to a change in attitude 
in the AI community that occurred in the mid-1980s:

Recent years have seen a sea change in both the content and the methodology of research 
in artificial intelligence. It is now more common to build on existing theories than to propose 
brand new ones, to base claims on rigorous theorems or hard experimental evidence rather 
than on intuition, and to show relevance to real-world applications rather than toy examples. 
Some have characterized this change as a victory of the  neats – those who think that AI 
theories should be grounded in mathematical rigor – over the  scruffies – those who would 
rather try out lots of ideas, write some programs, and then assess what seems to be working. 
Both approaches are important. A shift toward increased neatness implies that the field has 
reached a level of stability and maturity. (Whether that stability will be disrupted by a new 
scruffy idea is another question). [14]

Put this way, the distinction between neats and scruffies reflects very favorably on 
those who dominate AI research today.

The  present  paper  disputes  this  analysis:  the  Scruffy  era  was  defined  by  an 
engineering attitude to the problem, while the present day Neat era is defined by a 
mathematical attitude that gives a comforting illusion of rigor simply because of the 
halo  effect  caused  by  large  amounts  of  proof  and  deduction.  The  transition  from 
Scruffy to Neat looks more like the transition from Intuitionism to Behaviorism in 
psychology, and Neat AI has the same spurious aura of rigor that Behaviorism had.

No amount of mathematics can compensate for fundamental axioms that, when 
examined closely, turn out to be just as speculative as the ones that drove the engineers 
who  came  before.  The  complex  systems  perspective  would  argue  that  the  overall 
performance of Neat AI systems will only be clear when complete examples of such 
systems—including all of the sensorimotor and learning mechanisms needed to ground 
them—are actually available for inspection and have been shown to converge on real 
intelligent behavior. Neat AI has scrupulously avoided such a showdown, so there is 
not yet any reason to believe that the assumptions at the root of the impressive-seeming 
mathematics are any more valid than the Scruffy assumptions that came before.

What we need right now is neither engineering nor mathematics, but science. We 
should  be  devising  carefully  controlled  experiments  to  ask  about  the  behavior  of 
different kinds of systems, rather than exploring a few plausible systems chosen by 
instinct,  or  augmenting  the  same  kind  of  instinctually-chosen  systems  with 
mathematics as a way to make them seem less arbitrary and more rigorous. Both of 
those old approaches involve assumptions about the relationship between the high-level 



functionality of AI systems and their low-level mechanisms which, from the point if 
view of the Complex Systems Problem, are untenable.
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